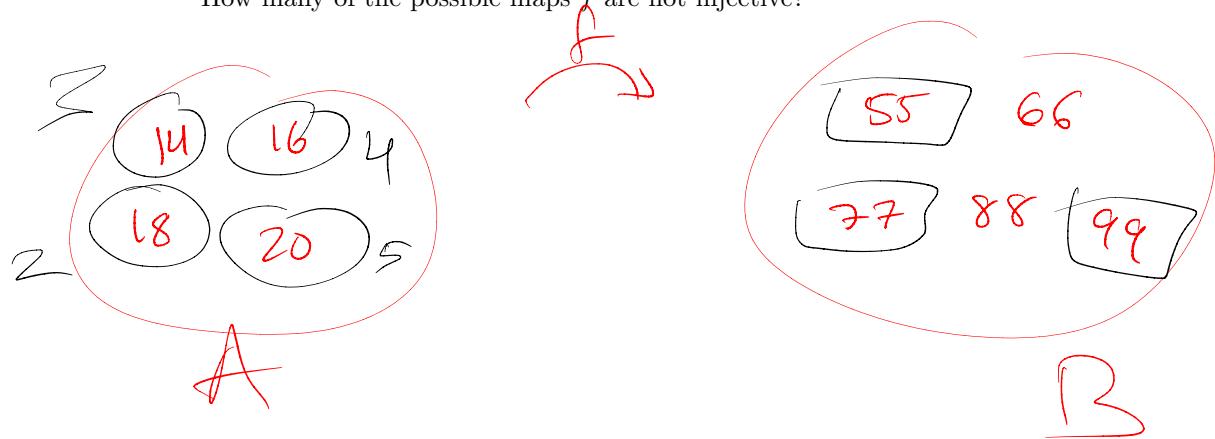

MATH 147 Review: Surjectivity and Injectivity

Facts to Know

Surjective	<ul style="list-style-type: none"> For each $y \in Y$, there exists $x \in X$ such that $f(x) = y$ 	
Injective	<ul style="list-style-type: none"> $\text{ran}(f) = Y$ For all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$ 	
Bijective	<ul style="list-style-type: none"> No point in the range is mapped to more than once. 	


Examples

- Consider two sets $X = \{1, 2, 3, 4\}$ and $Y = \{-8, 0, 20\}$. Let f be a surjective function from X to Y such that for any two elements x_1 and x_2 of X , if $x_1 < x_2$, then $f(x_1) \leq f(x_2)$. What is the minimum possible value of $f(4)$?

$$f(4) = 20$$

2. A function f maps the elements of $A = \{14, 16, 18, 20\}$ to elements of $B = \{55, 66, 77, 88, 99\}$.
 How many of the possible maps f are not injective?

$$5^4 = \# \text{ functions}$$

$$\# \text{ not injective} = \underbrace{\# \text{ functions}}_{5^4} - \# \text{ injective}$$

$$120 = \text{final answer}$$